[1]. J. S. Hummelshoj, A. C. Luntz, J. K. Norskov, "Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry". J. Chem. Phys. 138, 034703 (2013).

[2]. V. Viswanathan et al., "Li–O2 Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory", The J.  Phys. Chem. Lett. 4, 556 (2013).

[3] J. M. Garcia-Lastra, J.S.G. Myrdal, R. Christensen, K. S. Thygesen and T. Vegge, "DFT+U study of polaronic conduction in Li2O2 and Li2CO3: Implications for Li-air batteries", J. Phys. Chem. C 117, 5568 (2013).

[4] J. S. G. Mýrdal, D. Blanchard, D. Sveinbjörnsson and T. Vegge, "Li-ion conduction in the LiBH4:LiI system from Density Functional Theory calculations and Quasi-Elastic Neutron Scattering", J. Phys. Chem. C 117, 9084  (2013). 

[5] V. Tripković et al, First Principle Investigation of Zinc-anode Dissolution in Zinc-air Batteries, Phys. Chem. Chem. Phys. 15, 6416  (2013).


[6] Y. S. Mekonnen, K. B. Knudsen, J. S. G. Mýrdal, R. Younesi, J. Højberg, J. Hjelm, P. Norby, T. Vegge, "Communication: The Influence of CO2 Poisoning on Overvoltages and Discharge Capacity in Non-aqueous Li-Air Batteries", J. Chem. Phys. 140, 121101 (2014)

New feature article and Journal Cover Featured article and Journal Cover

[7] J. S. G. Mýrdal, T. Vegge, DFT study of selective poisoning of Li-Air batteries for increased discharge capacity, RSC Advances 4, 15671 (2014)  

[8] A.C. Luntz, V. Viswanathan, J. Voss, J.B. Varley, J.K. Nørskov, R. Scheffler, A. Spiedel, "Tunneling and Polaron Charge Transport Through Li2O2 in Li-O2 Batteries", J. Phys. Chem. Lett. 4, 3494 (2014).  

[9] J. B. Varley, V. Viswanathan, J. K. Nørskov, A. C. Luntz, "Lithium and Oxygen Vacancies and their Role in Li2O2 Charge Transport in Li-O2 Batteries" Energy Eniviron Sci. 7, 720 (2014).

[10] Reza Younesi, Poul Norby, Tejs Vegge, "A New Look at the Stability of Dimethyl Sulfoxide and Acetonitrile in Li-O2 Batteries", ECS Electrochemistry Letters 3, A15-A18 (2014).

[11] A. C. Luntz, B. D. McCloskey, "Nonaqueous Li–air batteries: a status report", Chemical reviews 114, 11721 (2014).


[12] M. M. Storm, M. Overgaard, R. Younesi, N. E. A. Reeler, T. Vosch, U. G. Nielsen, K. Edström, P. Norby, "Reduced graphene oxide for Li–air batteries: The effect of oxidation time and reduction conditions for graphene oxide", Carbon 85, 233 (2015).

[13] M. M. Storm, R. E. Johnsen, R. Younesi, P. Norby, "Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies", J. Mater. Chem. A 3, 3113 (2015)

[14] J. Højberg, B. D. McCloskey, J. Hjelm, T. Vegge, K. Johansen, P. Norby, A. C. Luntz "An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li-O2 Batteries", ACS Appl. Mater. Interfaces 7, 4039 (2015).

[15] L. D. Chen, J. K. Norskov, A. C. Luntz, "Al-Air Batteries: Fundamental Thermodynamic Limitations from First Principles Theory", J. Phys. Chem. Lett. 6, 174 (2015)

[16] J. Højberg,K. Knudsen, J. Hjelm, T. Vegge "Reactions and SEI formation during charging of Li-O2 cells" ECS Electrochem. Lett. 4, A63 (2015).

[17] R. Christensen, J. S. Hummelshøj, H. A. Hansen, T. Vegge, Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations, J Phys. Chem. C 119, 17596 (2015)

[18] Y. Mekkonen, J. M. Garcia-Lastra, J. S. Hummelshøj, J. Chengjun, T. Vegge, The Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Non-Aqueous Li-Air Batteries, J. Phys. Chem. C 119, 18066-18073

[19] L. D. Chen, J. K. Norskov, A. C. Luntz, Theoretical Limits to the Anode Potential in Aqueous Mg-Air Batteries J. Phys. Chem. C 119, 19660 (2015)

[20] R. Younesi, G. M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S, Energy & Environ. Sci. 8, 1905-1922 (2015)

[21] K. B. Knudsen, A. C. Luntz, S. H. Jensen, T. Vegge, J. Hjelm, Redox probing study of the potential dependence of charge transport through Li2O2, J. Phys. Chem. C 199, 28292 (2015)

[22] S. Das, J. Højberg, K. B. Knudsen, R. Younesi, P. Johansson, P. Norby, T. Vegge, Instability of Ionic Liquid-Based Electrolytes in Li-O2 batteries, J. Phys. Chem. C. 119, 18084 (2015)

[23] A. E. Christensen, J. Højberg, P. Norby, T. Vegge, Impedance-based Battery Management for Metal-O2 SystemsJ. Electrochem. Soc. 162, A2075-A2079 (2015)

[24] T. B. van Driel, K. S. Kjær, E. Biasin, K. Haldrup, H. T. Lemke, M. M. Nielsen, Disentangling Detector Data in XFEL Studies of Temporally Resolved Solution State Chemistry, Faraday Discussions 177, 443 (2015)

[25] T. B. van Driel,  S. Herrmann,  G. Carini,  M. M. Nielsen, H. T. Lemke, Correction of complex nonlinear signal response from a pixel array detector, Journal of Synchrotron Radiation, 22, 584 (2015)


[26] K. B. Knudsen, J. E. Nichols, T. Vegge, A. C. Luntz, B. D. McCloskey, J. Hjelm, An Electrochemical Impedance Spectroscopy Study on the Effects of the Surface- and Solution-Based Mechanisms in Li-O2 Cells, J. Electrochem. Soc. 9 A2065-A2071 (2016)

[27] K. B. Knudsen, J. E. Nichols, T. Vegge, A. C. Luntz, B. McCloskey, An Electrochemical Impedance Study of the Capacity Limitations in Na-O2 Cells, J. Phys. Chem. C. 120, 10799 (2016)

[28] M. M. Storm, M. Christensen, R. Younesi, P. Norby, In situ Analysis of the Li-O2 Battery with Thermally Reduced Graphene Oxide Cathode: Influence of Water Addition,  J. Phys. Chem. C. (accepted)

[29] I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjær, D. Zhao, T. Lenz, Y. Gu, P. W.M. Blom, D. Damjanovic, M. M. Nielsen, D. M. de Leeuw, The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene-fluoride), Nature Materials, 15, 78 (2016)

[30] M. M. Storm, R. E. Johnsen, P. Norby, In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide,  J. Solid St. Chem. 240, 49-54 (2016)